Issue 35, 2017

In situ reversible tuning of photoluminescence of an epitaxial thin film via piezoelectric strain induced by a Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal

Abstract

Conventionally, photoluminescence (PL) properties are mainly modulated through traditional chemical approaches which are ex situ, irreversible and static modulation techniques, potentially limiting the understanding of the detailed process of luminescence and smart PL applications. Here, an in situ dynamic routine is developed to tune the PL response in an epitaxial Yb3+/Er3+ co-doped BaTiO3 thin film through electric-field-induced strain of a piezoelectric single-crystal Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) substrate. A reversible tuning and enhancement of the PL intensity was achieved when an external electric field was applied to the PMN–PT single-crystal substrate. The underlying mechanism responsible for the dynamic enhancement of the PL intensity was attributed to the strain induced lower host symmetry so as to enhance the hypersensitive transition probability of the rare-earth ions. The present work could provide a significant guide for the in situ dynamic and active modulation of the PL performances of luminescent devices through the piezoelectric strain.

Graphical abstract: In situ reversible tuning of photoluminescence of an epitaxial thin film via piezoelectric strain induced by a Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2017
Accepted
09 Aug 2017
First published
09 Aug 2017

J. Mater. Chem. C, 2017,5, 9115-9120

In situ reversible tuning of photoluminescence of an epitaxial thin film via piezoelectric strain induced by a Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal

F. Wang, D. Liu, Z. Chen, Z. Duan, Y. Zhang, D. Sun, X. Zhao, W. Shi, R. Zheng and H. Luo, J. Mater. Chem. C, 2017, 5, 9115 DOI: 10.1039/C7TC03123H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements