Issue 38, 2017

Discrete face-to-face stacking of anthracene inducing high-efficiency excimer fluorescence in solids via a thermally activated phase transition

Abstract

It is always a challenge for planar polycyclic aromatic molecules to achieve high efficiency in solids owing to their frequent encounter with aggregation-caused quenching (ACQ). An anthracene derivative with one-side meta-substituted triphenylamine (TPA) was found to show high-efficiency excimer fluorescence (ηPL = 76.8%) in G-phase (green) crystals as well as a long lifetime, in sharp contrast with that of a monomer in a doped film (ηPL = 36.6%) and that of B-phase (blue) crystals (ηPL = 8.1%). In essence, the excimer-induced enhanced emission can be ascribed to the special intermolecular stacking in the solid state, namely, discrete antiparallel dimeric stacks between anthracene moieties in G-phase crystals, which are responsible for greatly suppressed non-radiative deactivation due to a uniform emissive state preventing the formation of an energy-trapping “dark” state. Moreover, a G-phase could be obtained through a thermally-activated phase transition from B-phase crystals, corresponding to the completely synchronized change of fluorescence properties. The present results consolidate a novel strategy of designing discrete dimeric stacking of planar polycyclic aromatic molecules to achieve high-efficiency fluorescence in the solid state by an excimer-induced enhanced emission (EIEE) mechanism.

Graphical abstract: Discrete face-to-face stacking of anthracene inducing high-efficiency excimer fluorescence in solids via a thermally activated phase transition

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2017
Accepted
30 Aug 2017
First published
30 Aug 2017

J. Mater. Chem. C, 2017,5, 10061-10067

Discrete face-to-face stacking of anthracene inducing high-efficiency excimer fluorescence in solids via a thermally activated phase transition

Y. Shen, H. Liu, S. Zhang, Y. Gao, B. Li, Y. Yan, Y. Hu, L. Zhao and B. Yang, J. Mater. Chem. C, 2017, 5, 10061 DOI: 10.1039/C7TC03229C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements