Issue 45, 2017

Mesoscale organization of titania thin films enables oxygen sensing at room temperature

Abstract

The application of titania materials to gas sensing devices based on thin films are of limited utility because they only operate at a high working temperature and exhibit in general a low sensitivity. To overcome these constraints, a new type of oxygen sensor based on mesoporous titania thin films working at room temperature under UV irradiation has been developed. The increased density of charge carriers induced by the photoconductive effect, has been used to enhance the sensitivity of the thin oxide layers. Mesostructured titania films have been prepared via self-assembly and thermal processing to remove the organic template obtaining anatase nanocrystals. The mesoporous films show a striking decrease of the current in the presence of oxygen that acts as an electron scavenger. Mesoporous samples exhibit a much higher response with respect to dense titania, due to the higher surface area and the larger number of surface defects.

Graphical abstract: Mesoscale organization of titania thin films enables oxygen sensing at room temperature

Article information

Article type
Paper
Submitted
28 Jul 2017
Accepted
10 Oct 2017
First published
11 Oct 2017

J. Mater. Chem. C, 2017,5, 11815-11823

Mesoscale organization of titania thin films enables oxygen sensing at room temperature

P. Rassu, L. Malfatti, D. Carboni, M. F. Casula, S. Garroni, E. Zampetti, A. Macagnano, A. Bearzotti and P. Innocenzi, J. Mater. Chem. C, 2017, 5, 11815 DOI: 10.1039/C7TC03397D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements