Engineering highly sensitive whole-cell mercury biosensors based on positive feedback loops from quorum-sensing systems†
Abstract
Mercury contamination represents a global threat. A simple, sensitive, and rapid means of detecting trace mercury is urgently needed. Herein, we have developed a series of mercury biosensors by combining quorum sensing-based positive feedback systems with a mercury-specific operon, merR. Our results have demonstrated that the sensitivity and fluorescence intensity of the engineered E. coli cells were greatly improved thanks to the positive feedback system. In addition, by fitting the fluorescence signals to the classic Hill equation, we discovered that the responses of the engineered E. coli cells were close to ultrasensitive curves. Our work highlights quorum-sensing systems as a powerful tool in biosensor designs.