Issue 11, 2018

Gene expression data and FTIR spectra provide a similar phenotypic description of breast cancer cell lines in 2D and 3D cultures

Abstract

Thirteen breast cancer cell lines were grown in traditional two-dimensional (2D) monolayer and three-dimensional (3D) laminin-rich extracellular matrix (lrECM) culture models. Microarray-based transcriptional profiling data were published for these cell lines under both culture conditions. Colonies embedded in Matrigel matrix were fixed in formalin, embedded in paraffin and cut into 4 μm thick sections. The sections were mounted onto infrared-transparent barium fluoride windows and deparaffinized for Fourier transform infrared (FTIR) imaging. Samples consisting of Matrigel-coated 2D-grown cells followed the same processing procedure, simplifying comparison with 3D-cultured cells as well as with routinely prepared formalin-fixed, paraffin-embedded tissue specimens. Gene expression was found to be dominated by the cell line genome. Cluster analysis first groups the same cell line samples, independent of whether cells have been grown in 2D or 3D cultures. FTIR spectroscopy first groups by culture conditions when considering the full spectrum length. The paper reports two important results. First, both gene expression level and FTIR spectroscopy are multivariate techniques that contain sufficient information to identify uniquely both any cell line (among thirteen breast cancer cell lines) and phenotype induced by growing the cells in 2D or 3D lrECM cultures. Second, we established the presence of a strong correlation between gene expression patterns and FTIR spectral data for the thirteen breast cancer cell lines grown in both 2D and 3D lrECM cultures. These results suggest that, although based on completely different principles, the two approaches describe similarly the patterns of variations in cells.

Graphical abstract: Gene expression data and FTIR spectra provide a similar phenotypic description of breast cancer cell lines in 2D and 3D cultures

Supplementary files

Article information

Article type
Paper
Submitted
24 Jan 2018
Accepted
08 Apr 2018
First published
09 Apr 2018

Analyst, 2018,143, 2520-2530

Gene expression data and FTIR spectra provide a similar phenotypic description of breast cancer cell lines in 2D and 3D cultures

M. Smolina and E. Goormaghtigh, Analyst, 2018, 143, 2520 DOI: 10.1039/C8AN00145F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements