Issue 12, 2018

An improved k-nearest neighbour method to diagnose breast cancer

Abstract

As a molecular and noninvasive detection technology, Raman spectroscopy is promising for use in the early diagnosis of tumors. The SNR of spectra obtained from portable Raman spectrometers is low, which makes classification more difficult. A classification algorithm with a high recognition rate is required. In this paper, an algorithm of entropy weighted local-hyperplane k-nearest-neighbor (EWHK) is proposed for the identification of the spectra. When calculating the weighted distance between the prediction and the sample hyperplane, EWHK introduces the information entropy weighting to improve the algorithm of adaptive weighted k-local hyperplane (AWKH). It can reflect all of the sample information in the classification objectively and improve the classification accuracy. The breast cancer detection experimental results of EWHK showed a significant improvement compared with those of AWKH and k-nearest neighbor (KNN). The EWHK classifier yielded an average diagnostic accuracy of 92.33%, a sensitivity of 93.81%, a specificity of 87.77%, a positive prediction rate of 95.99% and a negative prediction rate of 83.69% during randomized grouping validation. The algorithm is effective for cancer diagnosis.

Graphical abstract: An improved k-nearest neighbour method to diagnose breast cancer

Article information

Article type
Paper
Submitted
31 Jan 2018
Accepted
13 May 2018
First published
23 May 2018

Analyst, 2018,143, 2807-2811

An improved k-nearest neighbour method to diagnose breast cancer

Q. Li, W. Li, J. Zhang and Z. Xu, Analyst, 2018, 143, 2807 DOI: 10.1039/C8AN00189H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements