Issue 14, 2018

Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing

Abstract

The fabrication of graphene electrode with three-dimensional (3D) porous architecture would be highly desirable for electrochemical (bio-)sensing. Direct-laser-writing (DLW) on polyimide sheet has been recognized as an advance approach to pattern 3D porous graphene frameworks (3DPGFs)-based electrode. Herein, taking advantages of this straightforward and cost-effective DLW technique, we demonstrated the scalable and robust fabrication of a new type of 3DPGFs-based electrode patterned on the surface of indium−tin oxide (ITO) glass, denoted as 3DPGF@ITO. In this study, polyimide layer was synthesized on ITO glass surface not only to act as a sacrificial precursor for the in situ growth of 3DPGFs, but also to serve as a passivation layer for the effective separation of 3DPGFs working area and ITO contact pad. Importantly, the laser-induced 3DPGFs on ITO surface exhibit a 3D hierarchical and macroporous architecture consisting of interconnected multi-layered graphene sheets with large surface area and abundant edge-plane-like defective sites. These appealing features render the proposed 3DPGF@ITO electrode with marked improvement in electrochemical performance over traditional commercial electrodes. Finally, the developed 3DPGF@ITO electrode was successfully applied as a working electrode to selectively detect three important biospecies, namely, ascorbic acid, dopamine, and uric acid, in their ternary mixture with a high resolution of oxidation potentials. Thus, we envision that the 3DPGF@ITO electrode will open highly promising perspectives for the development of sensitive electrode-based (bio-)sensors.

Graphical abstract: Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2018
Accepted
08 Jun 2018
First published
11 Jun 2018

Analyst, 2018,143, 3327-3334

Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing

Q. Hong, L. Yang, L. Ge, Z. Liu and F. Li, Analyst, 2018, 143, 3327 DOI: 10.1039/C8AN00888D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements