Comparative analysis of the cellular entry of polystyrene and gold nanoparticles using the freeze concentration method†
Abstract
Despite advances in nanoparticle delivery, established physical approaches, such as electroporation and sonication, result in cell damage, limiting their practical applications. In this study, we proposed a unique freeze concentration-based technique and evaluated the efficacy of the method using two types of nanoparticles: citrate-capped gold nanoparticles and carboxylated polystyrene nanoparticles. We further compared the internalisation behaviour of particles of various sizes with and without freezing. Confocal microscopic images showed that the uptake efficacy of 50 nm nanomaterials was greater than that of 100 nm particles. Polystyrene nanoparticles of 50 nm size had more favourable adsorption and internalisation behaviours compared to those of gold nanoparticles after freeze concentration. We also examined the possible endocytic pathways involved in the uptake of gold and polystyrene nanoparticles, and found that the route differed between non-frozen and frozen conditions. Overall, we determined the influence of the freeze concentration strategy on both nanomaterial internalisation and the endocytic uptake pathway. Our findings provide a mechanistic understanding of the internalisation of nanoparticles using a freezing approach and thereby contribute to further developments in nanotherapeutic applications.