Issue 6, 2018

Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery

Abstract

Dual and multi-stimuli responsive polymeric nanoparticles that respond to two or more signals can further improve drug release performance compared with nanoparticles that respond to a single stimulus. However, usage of such nanoparticles to deliver siRNA and chemotherapeutic drugs in a sequential manner are currently very rare; meanwhile, this technology is vital to optimize the efficacy of chemotherapy towards cancer cells with multidrug resistance. By loading o-nitrobenzyl ester derivative caged DOX (DOC) into the inner poly(lactic-co-glycolic acid) (PLGA) core and adsorbing siRNA of P-gp protein onto the cationic polymeric shell derived from a disulfide-containing alkyl modified polyethylenimine (C16-S-S-PEI), here, a reduction/photo dual responsive device (RPDRD) is successfully designed for programmed P-gp siRNA and doxorubicin delivery. The dual-stimuli design of the RPDRD allows tumor microenvironment-specific and rapid release of P-gp siRNA triggered by the enrichment of reducing agent glutathione (GSH, up to 10 mM) for reversal of drug resistance by initially suppressing P-gp protein expression in MCF/ADR cells and then selectively triggering drug release by external light for chemotherapy afterwards. The sequential release behavior of P-gp siRNA and DOX can be demonstrated both in vitro and in vivo, thus enhancing the intracellular drug retention and optimizing the chemotherapy efficacy of DOX by silencing P-gp; this strategy may have extensive application prospects in MDR cancer treatment in future.

Graphical abstract: Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2018
Accepted
25 Apr 2018
First published
02 May 2018

Biomater. Sci., 2018,6, 1457-1468

Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery

M. Wu, J. Li, X. Lin, Z. Wei, D. Zhang, B. Zhao, X. Liu and J. Liu, Biomater. Sci., 2018, 6, 1457 DOI: 10.1039/C8BM00226F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements