Issue 11, 2018

Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells

Abstract

The use of human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) is an attractive therapeutic option for damaged nerve tissues. To direct neuronal differentiation of stem cells, we have previously developed an electrospun polycaprolactone nanofiber scaffold that was functionalized with siRNA targeting Re-1 silencing transcription factor (REST), by mussel-inspired bioadhesive coating. However, the efficacy of nanofiber-mediated RNA interference on hiPSC-NPCs differentiation remains unknown. Furthermore, interaction between such cell-seeded scaffolds with injured tissues has not been tested. In this study, scaffolds were optimized for REST knockdown in hiPSC-NPCs to enhance neuronal differentiation. Specifically, the effects of two different mussel-inspired bioadhesives and transfection reagents were analyzed. Scaffolds functionalized with RNAiMAX Lipofectamine-siREST complexes enhanced the differentiation of hiPSC-NPCs into TUJ1+ cells (60% as compared to 22% in controls with scrambled siNEG after 9 days) without inducing high cytotoxicity. When cell-seeded scaffolds were transplanted to transected spinal cord organotypic slices, similar efficiency in neuronal differentiation was observed. The scaffolds also supported the migration of cells and neurite outgrowth from the spinal cord slices. Taken together, the results suggest that this scaffold can be effective in enhancing hiPSC-NPC neuronal commitment by gene-silencing for the treatment of injured spinal cords.

Graphical abstract: Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2018
Accepted
25 Sep 2018
First published
27 Sep 2018

Biomater. Sci., 2018,6, 3019-3029

Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells

W. H. Chooi, W. Ong, A. Murray, J. Lin, D. Nizetic and S. Y. Chew, Biomater. Sci., 2018, 6, 3019 DOI: 10.1039/C8BM01034J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements