Orthogonal reactivity of Ni(i)/Pd(0) dual catalysts for Ullmann C–C cross-coupling: theoretical insight†
Abstract
Dual catalysis has become a desirable alternative because of the synergetic effect of two distinct catalysts, but little is known about the mechanism of dual catalysis and its effect on the high reactivity and selectivity. Here, a novel Ullmann C–C cross-coupling of bromobenzene and 4-methoxyphenyltriflate via nickel/palladium dual catalysis has been investigated using density functional theory. The orthogonal reactivity of NiI/Pd0 combination is the precondition and foundation of achieving such a Ullmann cross-coupling reaction. In the present dual catalysis, the NiI complex acts as the primary catalyst, while the Pd0 catalyst plays a decisive role in the cross-selectivity.