Bubble-assisted fabrication of hollow CoMoO4 spheres for energy storage†
Abstract
Herein, gas bubbles generated in situ from precursors assist the rapid construction of hollow sycamore fruit-like CoMoO4 spheres (HSCSs). This bubble-assisted fabrication strategy is easy to operate, ultra-fast, low cost and post-treatment-free, showing great potential for the large-scale production of HSCSs. The growth mechanism of HSCSs is discussed to reveal the evolution process, which may be generalized to the construction of a series of hollow ternary Mo-based oxides. The obtained HSCSs exhibit a superior specific capacitance and outstanding cyclic stability when applied in supercapacitors.