Issue 6, 2018

Molecular electrostatic potential on the proton-donating atom as a theoretical descriptor of excited state acidity

Abstract

Organic photoacids with enhanced acidities in the excited states have received much attention both experimentally and theoretically because of their applications in nanotechnology and chemistry. In this study, we investigate the excited-state acidities of 14 hydroxyl-substituted aromatic photoacids, with a focus on using theoretical molecular electrostatic potential (MEP) as an effective descriptor for photoacidity. For these model photoacids, we applied time-dependent density functional theory (TDDFT) at the ωB97X-D/6-31G(d) level to calculate the molecular electrostatic potentials of S1 excited states and show that the molecular electrostatic potential on the proton-donating atom exhibits a linear relationship with the observed excited-state logarithmic acid dissociation constant (pKa*). As a result, the molecular electrostatic potential on the proton-donating atom can be used to estimate the pKa* values based on simple TDDFT calculations for a broad range of hydroxyl-substituted aromatic compounds. Furthermore, we explore the molecular electrostatic potential as a quantum descriptor for the photoacidities of cationic photoacids, and show a universal behavior of the pKa*–MEP dependence. We also investigate the solvent effects on the photoacidity using TDDFT calculations with implicit solvent models. Finally, we discuss the physical insights implicated by the molecular electrostatic potential as a successful measure for photoacidity on the mechanism of proton transfer in the molecular excited states. This pKa* descriptor provides an effective means to quantify the tendency of excited-state proton transfer with a relatively small computational cost, which is expected to be useful in the design of functional photoacids.

Graphical abstract: Molecular electrostatic potential on the proton-donating atom as a theoretical descriptor of excited state acidity

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2017
Accepted
03 Jan 2018
First published
03 Jan 2018

Phys. Chem. Chem. Phys., 2018,20, 4351-4359

Molecular electrostatic potential on the proton-donating atom as a theoretical descriptor of excited state acidity

Y. Wang and Y. Cheng, Phys. Chem. Chem. Phys., 2018, 20, 4351 DOI: 10.1039/C7CP01948C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements