Issue 8, 2018

Molecular dynamics of the halloysite nanotubes

Abstract

We report large-scale and long-time molecular dynamics simulations demonstrating the transformation of a single kaolin alumosilicate sheet to a halloysite nanotube. The models we consider contain up to 5 × 105 atoms, which is two orders of magnitude larger than that used in previous theoretical works. It was found that the temperature plays a crucial role in the formation of the rolled geometry of the halloysite. For the models with periodic boundary conditions, we observe the tendency to form twin-tube structures, which is confirmed experimentally by atomic force microscopy imaging. The molecular dynamics calculations show that the rate of the rolling process is very sensitive to the choice of the winding axis and varies from 5 ns to 25 ns. The effects of the open boundary conditions and the initial form of the kaolin alumosilicate sheet are discussed. Our simulation results are consistent with experimental TEM and AFM halloysite tube imaging.

Graphical abstract: Molecular dynamics of the halloysite nanotubes

Article information

Article type
Paper
Submitted
26 Sep 2017
Accepted
19 Jan 2018
First published
19 Jan 2018

Phys. Chem. Chem. Phys., 2018,20, 5841-5849

Molecular dynamics of the halloysite nanotubes

D. A. Prishchenko, E. V. Zenkov, V. V. Mazurenko, R. F. Fakhrullin, Y. M. Lvov and V. G. Mazurenko, Phys. Chem. Chem. Phys., 2018, 20, 5841 DOI: 10.1039/C7CP06575B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements