Issue 6, 2018

Remarkable hydrogen storage properties of MgH2 doped with VNbO5

Abstract

The present work concerns the catalytic effect of VNbO5, a ternary oxide prepared via a solid-state route, on the sorption performance of MgH2. Three doped systems, namely 5, 10 and 15 wt% VNbO5–MgH2 have been prepared by ball milling and thoroughly characterized. Hydrogen sorption, evaluated by temperature programmed desorption experiments, revealed a significant reduction of the desorption temperature from 330 °C for the un-doped sample (prepared and tested for comparison) to 235 °C for the VNbO5-doped sample. Furthermore, more than 5 wt% of hydrogen can be absorbed in 5 minutes at 160 °C under 20 bar of hydrogen, which is remarkable compared to the 0.7 wt% achieved for the un-doped system. The sample doped with 15 wt% of additive, showed good reversibility: over 5 wt% of hydrogen with negligible degradation even after 70 consecutive cycles at 275 °C and 50 cycles at 300 °C. The kinetics analysis carried out by Kissinger's method exhibited a considerable reduction of the activation energy for the desorption process. Finally, pressure-composition-isotherm experiments conducted at three different temperatures allowed estimating the thermodynamic stability of the system and shed light on the additive role of VNbO5.

Graphical abstract: Remarkable hydrogen storage properties of MgH2 doped with VNbO5

Article information

Article type
Paper
Submitted
21 Oct 2017
Accepted
04 Jan 2018
First published
05 Jan 2018

Phys. Chem. Chem. Phys., 2018,20, 4100-4108

Remarkable hydrogen storage properties of MgH2 doped with VNbO5

A. Valentoni, G. Mulas, S. Enzo and S. Garroni, Phys. Chem. Chem. Phys., 2018, 20, 4100 DOI: 10.1039/C7CP07157D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements