Issue 22, 2018

On the hydrogen evolution reaction activity of graphene–hBN van der Waals heterostructures

Abstract

Although graphene technology has reached technology readiness level 9 and hydrogen fuel has been identified as a viable futuristic energy resource, pristine atomic layers such as graphene are found to be inactive towards the hydrogen evolution reaction (HER). Enhancing the intrinsic catalytic activity of a material and increasing its number of active sites by nanostructuring are two strategies in novel catalyst development. Here, electrocatalytically inert graphene (G) and hexagonal boron nitride (hBN) are made active for the HER by forming van der Waals (vdW) heterostructures via vertical stacking. The HER studies are conducted using defect free shear exfoliated graphite and hBN modified glassy carbon electrodes via layer by layer sequential stacking. The G/hBN stacking pattern (AA, AB, and AB′) and stacking sequence (G/hBN or hBN/G) have been found to play important roles in the HER activity. Enhancement in the intrinsic activity of graphene by the formation of G/hBN vdW stacks has been further confirmed with thermally reduced graphene oxide and hBN based structures. Tunability in the HER performance of the G/hBN vdW stack is also confirmed via a three-dimensional rGO/hBN electrode. HER active sites in the G/hBN vdW structures are then mapped using density functional theory calculations, and an atomistic interpretation has been identified.

Graphical abstract: On the hydrogen evolution reaction activity of graphene–hBN van der Waals heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2018
Accepted
12 Mar 2018
First published
13 Mar 2018

Phys. Chem. Chem. Phys., 2018,20, 15007-15014

On the hydrogen evolution reaction activity of graphene–hBN van der Waals heterostructures

S. Bawari, N. M. Kaley, S. Pal, T. V. Vineesh, S. Ghosh, J. Mondal and T. N. Narayanan, Phys. Chem. Chem. Phys., 2018, 20, 15007 DOI: 10.1039/C8CP01020J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements