Issue 35, 2018

17O and 1H NMR spectral parameters in isolated water molecules

Abstract

Small amounts of water enriched in oxygen-17 were studied by 17O and 1H NMR in binary gaseous mixtures with Xe, Kr, CHF3 and CH3F and CO2. The distinct linear dependences of 17O and 1H chemical shifts and 1J(17O,1H) spin–spin coupling on the density of every gas solvent were measured. After the extrapolation of experimental results to zero density the relevant parameters in the isolated H217O molecule were determined. The same procedure was applied for H216O when its proton chemical shift was analyzed but the secondary isotope effect in the 1H shielding of H217O and H216O molecules was too small for detection. As shown, all the intermolecular effects in nuclear magnetic shielding are negative and these effects are more significant for 17O nuclei than for protons. It is consistent with the appropriate gas-to-liquid shifts of water which also indicate deshielding effects for both the investigated nuclei. On the other hand, the 1J0(17O,1H) coupling constant in H217O, which is completely free from intermolecular interactions, considerably differs from the 1J(17O,1H) experimental values obtained for water in liquid solutions. The present experimental data of the isolated H217O molecule are compared with selected results of shielding and spin–spin coupling calculations available from the literature and with the recent experimental data for a water molecule encapsulated in the C60 fullerene. Additionally, on the basis of actual results the magnetic dipole moment of the 17O nucleus is revalued for greater accuracy.

Graphical abstract: 17O and 1H NMR spectral parameters in isolated water molecules

Article information

Article type
Paper
Submitted
17 Mar 2018
Accepted
01 Aug 2018
First published
08 Aug 2018

Phys. Chem. Chem. Phys., 2018,20, 22468-22476

17O and 1H NMR spectral parameters in isolated water molecules

W. Makulski, M. Wilczek and K. Jackowski, Phys. Chem. Chem. Phys., 2018, 20, 22468 DOI: 10.1039/C8CP01748D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements