Issue 48, 2018

Chiral differentiation of d- and l-isoleucine using permethylated β-cyclodextrin: infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations

Abstract

Chiral differentiation of protonated isoleucine (Ile) using permethylated β-cyclodextrin (perCD) in the gas-phase was studied using infrared multiple photon dissociation (IRMPD) spectroscopy, ion-mobility, and density functional theory (DFT) calculations. The gaseous protonated non-covalent complexes of perCD and D-Ile or L-Ile produced by electrospray ionization were interrogated by laser pulses in the wavenumber region of 2650 to 3800 cm−1. The IRMPD spectra showed remarkably different IR spectral features for the D-Ile or L-Ile and perCD non-covalent complexes. However, drift-tube ion-mobility experiments provided only a small difference in their collision cross-sections, and thus a limited separation of the D- and L-Ile complexes. DFT calculations revealed that the chiral distinction of the D- and L-complexes by IRMPD spectroscopy resulted from local interactions of the protonated Ile with perCD. Furthermore, the theoretical results showed that the IR absorption spectra of higher energy conformers (by ∼13.7 kcal mol−1) matched best with the experimentally observed IRMPD spectra. These conformers are speculated to be formed from kinetic-trapping of the solution-phase conformers. This study demonstrated that IRMPD spectroscopy provides an excellent platform for differentiating the subtle chiral difference of a small amino acid in a cyclodextrin-complexation environment; however, drift-tube ion-mobility did not have sufficient resolution to distinguish the chiral difference.

Graphical abstract: Chiral differentiation of d- and l-isoleucine using permethylated β-cyclodextrin: infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2018
Accepted
21 Nov 2018
First published
22 Nov 2018

Phys. Chem. Chem. Phys., 2018,20, 30428-30436

Chiral differentiation of D- and L-isoleucine using permethylated β-cyclodextrin: infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations

S. Lee, J. Lee, J. H. Oh, S. Park, Y. Hong, B. K. Min, H. H. L. Lee, H. I. Kim, X. Kong, S. Lee and H. B. Oh, Phys. Chem. Chem. Phys., 2018, 20, 30428 DOI: 10.1039/C8CP05617J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements