Issue 39, 2018

Dynamic calorimetry and XRD studies of the nematic and twist-bend nematic phase transitions in a series of dimers with increasing spacer length

Abstract

A modulated and conventional DSC study of the transitions between the twist-bend nematic (Ntb), regular nematic (N) and isotropic liquid (Iso) phases was performed on a series of difluoroterphenyl-based dimers with (CH2)n spacers; n = 5, 7, 9, 11. The enthalpy of Ntb–N transition decreases steeply with increasing n, while that of the N–Iso transition increases with n; hence, the greatest effect of increasing n is a lowering N phase enthalpy. Based on past and present X-ray scattering experiments, we estimate the average molecular conformation in the Ntb phase and perform torsion energy calculations on the spacer. From this, the lowering enthalpy of the N phase is attributed to the decreasing torsional energy cost of bringing the two terphenyls from an inclined twisted conformation in the Ntb phase, to almost parallel in the N phase. With increasing n the C–C bonds of the spacers twist less away from their trans conformation, thereby reducing the overall torsion energy of the N phase. It is speculated that the nearly continuous nature of the Ntb–N transition in n = 11 dimer is associated with the divergence of the helical pitch toward infinity which is intercepted by a final jump at the very weak (0.01 J g−1) first-order transition. Small-angle X-ray scattering results suggest similar local cybotactic layering in both nematic phases, with four sublayers, i.e. tails, mesogens, spacers, mesogens.

Graphical abstract: Dynamic calorimetry and XRD studies of the nematic and twist-bend nematic phase transitions in a series of dimers with increasing spacer length

Supplementary files

Article information

Article type
Paper
Submitted
11 Sep 2018
Accepted
24 Sep 2018
First published
24 Sep 2018

Phys. Chem. Chem. Phys., 2018,20, 25268-25274

Dynamic calorimetry and XRD studies of the nematic and twist-bend nematic phase transitions in a series of dimers with increasing spacer length

W. D. Stevenson, H. Zou, X. Zeng, C. Welch, G. Ungar and G. H. Mehl, Phys. Chem. Chem. Phys., 2018, 20, 25268 DOI: 10.1039/C8CP05744C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements