Issue 3, 2018

Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development

Abstract

Anticancer metallodrugs based on ruthenium and osmium are among the most investigated and advanced non-platinum metallodrugs. Inorganic drug discovery with these agents has undergone considerable advances over the past two decades and has currently two representatives in active clinical trials. As many ruthenium and osmium metallodrugs are prodrugs, a key question to be addressed is how the molecular reactivity of such metal-based therapeutics dictates the selectivity and the type of interaction with molecular targets. Within this frame, this review introduces the field by the examples of the most advanced ruthenium lead structures. Then, global structure–activity relationships are discussed for ruthenium and osmium metallodrugs with respect to in vitro antiproliferative/cytotoxic activity and in vivo tumor-inhibiting properties, as well as pharmacokinetics. Determining and validating global mechanisms of action and molecular targets are still major current challenges. Moreover, significant efforts must be invested in screening in vivo tumor models that mimic human pathophysiology to increase the predictability for successful preclinical and clinical development of ruthenium and osmium metallodrugs.

Graphical abstract: Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development

Article information

Article type
Review Article
Submitted
31 Jul 2017
First published
24 Nov 2017

Chem. Soc. Rev., 2018,47, 909-928

Structure–activity relationships for ruthenium and osmium anticancer agents – towards clinical development

S. M. Meier-Menches, C. Gerner, W. Berger, C. G. Hartinger and B. K. Keppler, Chem. Soc. Rev., 2018, 47, 909 DOI: 10.1039/C7CS00332C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements