Issue 20, 2018

Defects on carbons for electrocatalytic oxygen reduction

Abstract

The exploration of highly active and durable cathodic oxygen reduction reaction (ORR) catalysts with economical production costs is still the bottleneck to realize the large-scale commercialization of fuel cells. In recent years, remarkable progress has been achieved in fabricating effective non-precious metal based ORR catalysts. In particular, modified carbon materials have aroused extensive research interest because of their excellent performance and low cost. In this review, we present an overview on recent advancements in developing defective carbon based materials for catalyzing the ORR. In particular, three general kinds of defective carbon electrocatalysts will be summarized. They are non-metal induced defective carbons (modified by heteroatoms), intrinsic defective carbons (defects created by a physical or chemical method), and atomic metal species induced/coordinated defective carbons (metal-macrocycle complexes with different coordination environments). The common configurations of various defective carbons will be discussed, with typical examples on recently developed both metal-free and precious/non-precious metal species coordinated carbons. Finally, the future research directions of the defective carbon materials are proposed. The newly established defect promoted catalysis mechanism will be beneficial for the design and fabrication of highly effective electrocatalysts for practical energy storage and conversion applications.

Graphical abstract: Defects on carbons for electrocatalytic oxygen reduction

Article information

Article type
Review Article
Submitted
06 Jul 2018
First published
24 Sep 2018

Chem. Soc. Rev., 2018,47, 7628-7658

Defects on carbons for electrocatalytic oxygen reduction

X. Yan, Y. Jia and X. Yao, Chem. Soc. Rev., 2018, 47, 7628 DOI: 10.1039/C7CS00690J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements