Issue 6, 2018

Cinnamaldehyde hydrogenation using Au–Pd catalysts prepared by sol immobilisation

Abstract

We report the catalytic performance of Au–Pd nanoparticles prepared via a sol immobilisation technique for the catalytic hydrogenation of cinnamaldehyde under mild reaction conditions. We synthesised a series of bimetallic Au–Pd colloidal supported nanoparticles with different Au : Pd molar ratios and optimized the experimental parameters to achieve the best catalyst performance. The optimum catalytic activity for the hydrogenation of cinnamaldehyde was observed for Au50Pd50/TiO2 (with a Au : Pd molar ratio of 1 : 1), while the monometallic Pd/TiO2 was the most selective towards hydrocinnamaldehyde. The catalysts have been structurally characterised and FTIR analysis showed that the presence of adsorbed carbonyl surface species in used catalyst materials is coupled with Pd leaching, which is the main reason for catalyst deactivation. The effect of calcination on the most active Au–Pd/TiO2 was studied in the range 110–400 °C and a direct correlation between the rise in calcination temperature and catalyst stability and selectivity was observed. These results emphasise the importance of tuning the Au–Pd molar ratio and understanding the metal–support interaction of catalysts synthesised for hydrogenation reactions, such as cinnamaldehyde hydrogenation.

Graphical abstract: Cinnamaldehyde hydrogenation using Au–Pd catalysts prepared by sol immobilisation

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2017
Accepted
11 Feb 2018
First published
12 Feb 2018

Catal. Sci. Technol., 2018,8, 1677-1685

Cinnamaldehyde hydrogenation using Au–Pd catalysts prepared by sol immobilisation

S. Cattaneo, S. J. Freakley, D. J. Morgan, M. Sankar, N. Dimitratos and G. J. Hutchings, Catal. Sci. Technol., 2018, 8, 1677 DOI: 10.1039/C7CY02556D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements