Carbon-supported perovskite-like CsCuCl3 nanoparticles: a highly active and cost-effective heterogeneous catalyst for the hydrochlorination of acetylene to vinyl chloride†
Abstract
Non-mercuric catalysts in acetylene hydrochlorination reaction have been gained much attention. Cu-based catalysts are low-cost, green and stable. However, their lower activity than that of mercury-based catalysts limits their practical applications. In this study, we report activated carbon-supported perovskite-like CsCuCl3 nanoparticles as a catalyst for hydrochlorination of acetylene. Cu–Cs/AC with 1 wt% Cu content exhibits superior activity than pure Cu/AC and even Hg/AC. At the condition of 200 °C and 50 h−1 industrial space velocity, C2H2 conversion is maintained at 92% over 200 h. Our findings suggest that the low-cost Cu–Cs/AC catalyst can be envisioned as a viable alternative to commercial toxic HgCl2 for acetylene hydrochlorination.