Palladium-mediated radical homocoupling reactions: a surface catalytic insight†
Abstract
In this contribution, we report a palladium nanoparticle-promoted reductive homocoupling of haloarenes that proceeds efficiently to produce corresponding bis-aryls in moderate to excellent yields using relatively low catalyst loading (1 mol%), and exhibits broad functional group tolerance. This work sheds light on how the surface state of Pd(0) nanoparticles plays a crucial role in the reactivity of catalytic systems. Notably, the appropriate choice of palladium salts for the preparation of the preformed nanocatalysts was a key parameter having a major impact on the catalytic activity; thus, the effect of halide anions on the reactivity of the as-prepared palladium nanoparticles could be assessed, with iodide anions being capable of inhibiting the corresponding homocoupling reaction. The homocoupling reaction mechanism has been further studied by means of radical trap and electron paramagnetic resonance (EPR) experiments, revealing that the reaction proceeds via radical intermediates. Taking into account these data, a plausible reaction mechanism based on single-electron transfer processes on the palladium nanoparticle surface is discussed.