Issue 22, 2018

Sintered precipitated iron catalysts with enhanced fragmentation-resistance ability for Fischer–Tropsch synthesis to lower olefins

Abstract

Commercial precipitated iron catalysts suffer from severe fragmentation when applied in the Fischer–Tropsch to lower olefins reaction (FTO). Herein, sintered precipitated iron catalysts for FTO are prepared by varying the calcination temperature from 800 to 1400 °C to enhance their fragmentation-resistance ability. Compared with traditional precipitated iron catalysts, sintered precipitated iron catalysts require higher reduction temperatures to maintain high and stable activity and shift the production of hydrocarbons towards lower olefins. Spent sintered precipitated iron catalysts show bulk morphologies with less fragmentation than the fragmented and aggregated morphologies of spent traditional precipitated iron catalysts. The amount of coke inside the spent catalysts decreases from 41.8 to 12.5% as the calcination temperature increases from 500 to 1200 °C, and simultaneously, the chain length of soluble coke decreases from C32 to C21. The lower amount of coke and shorter chain length of soluble coke of the sintered precipitated iron catalysts come from the stronger mechanical strength-induced less space for coke accumulation during FTO, which further enhance the fragmentation-resistance ability of the catalysts.

Graphical abstract: Sintered precipitated iron catalysts with enhanced fragmentation-resistance ability for Fischer–Tropsch synthesis to lower olefins

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2018
Accepted
09 Oct 2018
First published
11 Oct 2018

Catal. Sci. Technol., 2018,8, 5943-5954

Sintered precipitated iron catalysts with enhanced fragmentation-resistance ability for Fischer–Tropsch synthesis to lower olefins

Y. Chen, Y. Ni, Y. Liu, H. Liu, X. Ma, S. Liu, W. Zhu and Z. Liu, Catal. Sci. Technol., 2018, 8, 5943 DOI: 10.1039/C8CY01392F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements