Issue 5, 2018

Towards the continuous production of Pt-based heterogeneous catalysts using microfluidic systems

Abstract

The continuous production of Pt-based heterogeneous catalysts based on ultra-small (<2 nm) noble metal nanoparticles deposited on mesoporous ordered silica and their catalytic activity in VOC abatement are here reported. Microfluidic reactors can be used not only to enable the fast and controlled production of ultra-small Pt nanoparticles (NPs), but also alloyed NPs including PtPd, PtRu and PtRh can be formed in short residence times (between 60 s and 5 min). A novel continuous and homogeneous loading of these catalytic NPs on SBA-15 used as a mesoporous support is also here reported. This procedure eases the NP loading and minimizes washing post-treatments. A 12-fold decrease in the synthesis time was obtained when using this microfluidic reactor compared to the traditional batch production of Pt NPs. Microflow and batch type reactors yielded a Pt precursor conversion to generate Pt NPs with a 90% and 85% yield, respectively. Under the same conditions, the productivity of the microfluidic system (27 mg Pt NPs per h) was twice the one achieved in the conventional batch type reactor. The catalytic performance of the supported catalysts separately prepared by microfluidics and by conventional impregnation under the same conditions and with the same noble metal loading was also compared in the n-hexane abatement as a model of VOCs. Both catalysts were active in the VOC oxidation reaction but a 95% reduction in the catalyst synthesis time was obtained when using the catalysts produced in the microfluidic platform. For this reaction a long-term activity test was successfully carried out at 175 °C during 30 h on stream using the heterogeneous catalyst prepared by using the flow reactor.

Graphical abstract: Towards the continuous production of Pt-based heterogeneous catalysts using microfluidic systems

Supplementary files

Article information

Article type
Paper
Submitted
10 Sep 2017
Accepted
24 Dec 2017
First published
15 Jan 2018

Dalton Trans., 2018,47, 1693-1702

Towards the continuous production of Pt-based heterogeneous catalysts using microfluidic systems

U. Laura, M. Arruebo and V. Sebastian, Dalton Trans., 2018, 47, 1693 DOI: 10.1039/C7DT03360E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements