Synthesis, crystal structure and optical properties of a new fluorocarbonate with an interesting sandwich-like structure†
Abstract
A new fluorocarbonate, Na3Zn2(CO3)3F, was synthesized using a subcritical hydrothermal method. Na3Zn2(CO3)3F crystallizes in the space group C2/c with a sandwich-like framework in which the stacked [Zn(CO3)]∞ layers are connected with one another by bridging F atoms and [CO3] groups alternately. Interestingly, each Zn atom is surrounded by one F atom and four O atoms, forming a distorted [ZnO4F] trigonal bipyramid, which is observed for the first time in the carbonate system. Na3Zn2(CO3)3F has high transparency in a wide spectral region ranging from UV to mid IR with a short ultraviolet absorption edge (∼213 nm). First-principles calculations revealed that Na3Zn2(CO3)3F possesses a large birefringence (Δn = 0.11, λ = 589 nm), which is mainly contributed by the coplanar arrangement of [CO3] groups in the ab plane. Na3Zn2(CO3)3F might find applications as a UV birefringence crystal.