Issue 18, 2018

An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes

Abstract

The verdazyl ‘pincer’ ligand, 1-isopropyl-3,5-dipyridyl-6-oxoverdazyl (dipyvd), coordinates iron to form a series of pseudooctahedral coordination compounds [Fe(dipyvd)2]n+ (n = 0–3). In the case where n = 2, the molecular geometry and physical and spectral properties are consistent with a low spin (S = 0) iron(II) ion coordinated by two ferromagnetically coupled radical ligands. Upon one electron reduction, the room temperature effective magnetic moment of the complex jumps from μeff = 2.64 to μeff = 5.86 as a result of spin crossover of the iron atom combined with very strong ferromagnetic coupling of the remaining ligand centered unpaired electron with the metal center. The sign of the exchange is opposite to that observed in other high spin iron/radical ligand systems and appears to be a result of delocalization of the ligand unpaired electron across the whole molecule. The large change in magnetic properties, combined with a delocalized electronic structure and accessible redox potentials, suggests the utility of this and related systems in the development of novel molecular spintronic devices.

Graphical abstract: An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2018
Accepted
04 Apr 2018
First published
06 Apr 2018

Dalton Trans., 2018,47, 6351-6360

Author version available

An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes

D. J. R. Brook, C. Fleming, D. Chung, C. Richardson, S. Ponce, R. Das, H. Srikanth, R. Heindl and B. C. Noll, Dalton Trans., 2018, 47, 6351 DOI: 10.1039/C8DT00805A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements