Issue 41, 2018

Synthesis, structure, and condensed-phase reactivity of [Ag33-H)(μ3-BH4)LPh3](BF4) (LPh = bis(diphenylphosphino)amine) with CS2

Abstract

Electrospray ionisation mass spectrometry (ESI-MS) was used to monitor the reaction of AgBF4, bis(diphenylphosphino)amine (dppa = (Ph2P)2NH = LPh) and NaBH4 in acetonitrile and thereby direct the synthesis of the silver nanocluster [Ag33-H)(μ3-BH4)LPh3](BF4), 3b·BF4, formed via reaction of AgBF4, bis(diphenylphosphino)amine (dppa = (Ph2P)2NH = LPh) and NaBH4 in acetonitrile. The X-ray structure of 3b·BF4 highlights that the cation adopts a planar trinuclear Ag3 geometry surrounded by three dppa ligands and coordinated on the bottom face by a μ3-hydride and on the top face by a μ3-BH4. The solution phase structure of 3b·BF4 was characterised by multinuclear NMR and DOSY NMR, which showed that the borohydride anion remains bound in the [Ag33-H)(μ3-BH4)LPh3]+ cluster cation in solution. ESI-MS and in situ1H and HSQC NMR spectroscopy reveals that 3b·BF4 reacts with CS2 in solution at the BH4 site to yield [Ag3(H)(S2CH)LPh3]+, 4b, which has to date eluded structural characterisation via X-ray crystallography due to lack of formation of suitable crystals. The gas-phase ion chemistry of [Ag3(H)(S2CH)LPh3]+ was examined under multistage mass spectrometry conditions using collision-induced dissociation (CID) and compared to that of the previously examined copper analogue, [Cu3(H)(S2CH)LPh3]+. While both cluster cations fragment via ligand loss, the CID spectra of the resultant [M3(H)(S2CH)LPh2]+ are different. Unlike [Cu3(H)(S2CH)LPh2]+, which solely undergoes loss of thioformaldehyde to give [Cu3(S)LPh2]+, [Ag3(H)(S2CH)LPh2]+ gives a richer CID spectrum with fragmentation channels that include ligand loss, CH2S loss and reductive elimination of dithioformic acid. DFT calculations exploring rearrangement and fragmentation of the model systems [M3(H)(S2CH)LMe2]+ ((Me2P)2NH = dmpa = LMe) were used to suggest plausible mechanisms and examine the energetics of the three competing channels: ligand loss, CH2S loss and reductive elimination of dithioformic acid.

Graphical abstract: Synthesis, structure, and condensed-phase reactivity of [Ag3(μ3-H)(μ3-BH4)LPh3](BF4) (LPh = bis(diphenylphosphino)amine) with CS2

Supplementary files

Article information

Article type
Paper
Submitted
14 Jun 2018
Accepted
14 Sep 2018
First published
03 Oct 2018

Dalton Trans., 2018,47, 14713-14725

Synthesis, structure, and condensed-phase reactivity of [Ag33-H)(μ3-BH4)LPh3](BF4) (LPh = bis(diphenylphosphino)amine) with CS2

H. Z. Ma, J. M. White, R. J. Mulder, G. E. Reid, A. J. Canty and R. A. J. O'Hair, Dalton Trans., 2018, 47, 14713 DOI: 10.1039/C8DT02437E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements