Issue 39, 2018

VS2: an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium

Abstract

In view of preparing efficient electrocatalysts for energy conversion applications, we have developed an eco-friendly, cost effective, single step method for the scalable synthesis of VS2 and its reduced graphene oxide composite VS4/rGO. Furthermore, the electrocatalytic performances of the catalysts have been studied toward the hydrogen evolution reaction in an acid medium (0.1 M H2SO4). Presumably, the large exposed electrochemical active surface area (27.7 cm2) and hexagonal crystal lattice of VS2 result in its dominating catalytic performance over that of the linear VS4/rGO composite. Also, a VS2 modified electrode was demonstrated to have better stability (with a negligible change in the overpotential even after 10 h and 43 h of continuous electrolysis) with a notably low Tafel slope (36 mV dec−1, close to that of commercial Pt/C) and onset potential (15 mV vs. RHE) with robust durability for long term application. A preliminary study on the photoelectrochemical activities of VS2 showed a significant decrease in the charge transfer resistance upon illumination of light on the electrode surface.

Graphical abstract: VS2: an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2018
Accepted
23 Jul 2018
First published
23 Jul 2018

Dalton Trans., 2018,47, 13792-13799

VS2: an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium

J. K. Das, A. K. Samantara, A. K. Nayak, D. Pradhan and J. N. Behera, Dalton Trans., 2018, 47, 13792 DOI: 10.1039/C8DT02547A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements