Issue 39, 2018

Structure modulation from unstable to stable MOFs by regulating secondary N-donor ligands

Abstract

Four new Zn(II)/Cd(II)-based metal–organic frameworks (MOFs), namely {[Cd(tmdb)(bib)0.5]·solvents}n (YZ-7, YZ stands for the initials of the author Yong-Zheng Zhang), {[Cd(tmdb)(bmib)0.5]·solvents}n (YZ-8), {[Zn2(tmdb)2(bmib)]·solvents}n (YZ-9) and {[Zn2(tmdb)2(bmip)2]·solvents}n (YZ-10) have been solvothermally synthesized by using a semi-rigid ligand, 4,4′-(H-1,2,4-triazol-1-yl)methylene-dibenzoic acid (H2tmdb), and a series of secondary bis-imidazole ligands (bib = 1,4-bis(1H-imidazol-1-yl)benzene, bmib = 1,4-bis(2-methyl-1H-imidazol-1-yl)benzene, and bmip = 1,3-bis(2-methyl-1H-imidazol-1-yl)propane). By tuning the flexibility of the auxiliary ligands, these MOFs could be modulated from unstable (YZ-7–YZ-9) to stable (YZ-10) frameworks. Therefore, the gas adsorption properties of YZ-10 are further studied. Interestingly, it shows excellent CO2 selective uptake over CH4 and N2. At 298 K, both selectivities of CO2/CH4 and CO2/N2 show increasing trends and significantly reach 133.2 and 19.9 at 1 atm, respectively. Also, YZ-10 shows uncommon H2 selective uptake over N2 at 77 K. Moreover, the luminescence properties of YZ-8–YZ-10 were studied in the solid state at room temperature.

Graphical abstract: Structure modulation from unstable to stable MOFs by regulating secondary N-donor ligands

Supplementary files

Article information

Article type
Paper
Submitted
12 Jul 2018
Accepted
05 Sep 2018
First published
05 Sep 2018

Dalton Trans., 2018,47, 14025-14032

Structure modulation from unstable to stable MOFs by regulating secondary N-donor ligands

D. Zhang, Y. Zhang, J. Gao, H. Liu, H. Hu, L. Geng, X. Zhang and Y. Li, Dalton Trans., 2018, 47, 14025 DOI: 10.1039/C8DT02858C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements