Issue 43, 2018

Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr3 perovskite solar cells

Abstract

Perovskite-structured cesium lead bromide (CsPbBr3) halide provides new opportunities for promoting the commercialization of perovskite solar cells (PSC) due to its high carrier mobility and light absorption coefficient as well as remarkable environmental stability at high humidity and high temperatures. Herein, all-carbon electrodes from multi-walled carbon nanotubes (MWCNT) and carbon black (CB) were prepared for all-inorganic CsPbBr3 PSCs with the configuration of FTO/c-TiO2/m-TiO2/CsPbBr3/carbon. The as-prepared electrodes were free of hole-transporting layers and precious metals. The work function and electrical conductivity of the carbon electrode were tuned by changing the MWCNT/CB ratio to reduce charge recombination at the perovskite/carbon interface. The optimal all-inorganic PSC achieves a maximum power conversion efficiency of 7.62% using the MWCNT (75 wt%)/CB (25 wt%) electrode in comparison with 6.24% for the pure MWCNT-based device. Upon persistent attack by 80% RH in air atmosphere, the solar cell retains 95% of its initial efficiency over 1100 h.

Graphical abstract: Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr3 perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2018
Accepted
19 Sep 2018
First published
20 Sep 2018

Dalton Trans., 2018,47, 15283-15287

Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr3 perovskite solar cells

G. Liao, Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He and Q. Tang, Dalton Trans., 2018, 47, 15283 DOI: 10.1039/C8DT03296C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements