Issue 46, 2018

Ultralight supercapacitors utilizing waste cotton pads for wearable energy storage

Abstract

Successful popularization of wearable energy storage devices lies in the exploitation of scalable fabrication technologies that are based on economically viable materials. Herein, we reveal that discarded cotton pads can be used as a cost-efficient substrate for the in situ polymerization of pyrrole and exhibited good mechanical flexibility, lightness, and high conductivity. To extend the applications of the resulting PPy-coated cotton pads (PCPs) to the supercapacitor field, a layer of MnO2 nanosheets was further decorated on the surface of PCPs (PCPs@MnO2) by a simple electrochemical deposition technique. The PPy coating not only improves the electrical conductivity of the cotton pads, but also increases the contact between the active materials and the cotton fibers. Amazingly, ultrathin (≈ 0.8 mm) flexible solid-state asymmetric supercapacitors (ASCs) using PCPs@MnO2 as the positive electrode and active carbon coated on PCPs (PCPs@AC) as the negative electrode display a high areal capacitance of 1.21 F cm−2 at 1 mA cm−2, and a high energy density of 6.8 mW h cm−3 at a power density of 11.2 mW cm−3, which can also be tailored and folded into various shapes with only slight capacitance fading. These findings demonstrate that the prepared advanced ultralight, flexible and renewable cotton pads hold great promise for practical application in wearable energy storage systems with high cost effectiveness and scalability.

Graphical abstract: Ultralight supercapacitors utilizing waste cotton pads for wearable energy storage

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2018
Accepted
31 Oct 2018
First published
31 Oct 2018

Dalton Trans., 2018,47, 16684-16695

Ultralight supercapacitors utilizing waste cotton pads for wearable energy storage

Y. Lu, W. Wang, Y. Wang, M. Zhao, J. Lv, Y. Guo, Y. Zhang, R. Luo and X. Liu, Dalton Trans., 2018, 47, 16684 DOI: 10.1039/C8DT03997F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements