Issue 1, 2018

MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution

Abstract

In this study, we report nonmetal plasmonic MoS2@TiO2 heterostructures for highly efficient photocatalytic H2 generation. Large area laminated MoS2 in conjunction with TiO2 nanocavity arrays is achieved via carefully controlled anodization, physical vapor deposition, and chemical vapor deposition processes. The broad spectral response ranging from ultraviolet-visible (UV-vis) to near-infrared (NIR) wavelengths and finite element frequency-domain simulations suggest that this MoS2@TiO2 heterostructure enhances photocatalytic activity for H+ reduction. A high H2 yield rate of 181 μmol h−1 cm−2 (equal to 580 mmol h−1 g−1 based on the loading mass of MoS2) is achieved using a low catalyst loading mass. The spatially uniform heterostructure, correlated with plasmon-resonance through the conformal MoS2 coating that effectively regulates charge transfer pathways, is proven to be vitally important for the unique solar energy harvesting and photocatalytic H2 production. As an innovative exploration, our study demonstrates that the photocatalytic activities of nonmetal, earth-abundant materials can be enhanced with plasmonic effects, which may serve as an excellent catalytic agent for solar energy conversion to chemical fuels.

Graphical abstract: MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2017
Accepted
27 Sep 2017
First published
28 Sep 2017

Energy Environ. Sci., 2018,11, 106-114

MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution

L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du and Y. Yang, Energy Environ. Sci., 2018, 11, 106 DOI: 10.1039/C7EE02464A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements