Issue 1, 2018

Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells

Abstract

Perovskite solar cells (PSCs) are very promising lab-scale technologies to deliver inexpensive solar electricity. Low-temperature, planar PSCs are of particularly interest for large-scale deployment due to their inherent suitability for flexible substrates and potential for silicon/perovskite tandems. So far, planar PSCs have been prone to large current–voltage hysteresis and low stabilized power output due to a number of issues associated with this kind of device configuration. We find that the suppression of the yellow-phase impurity (∂-FAPbI3) present in formamidium-based perovskites, by RbI addition, contributes to low hysteresis, higher charge carrier mobility, long-lived carrier lifetimes and a champion stabilized power output of 20.3% using SnOx as the electron selective contact. We study the effects of these impurities on the transient behavior that defines hysteresis and its relation to ionic movement. In addition, we find that the formation of a RbPbI3 phase does not significantly affect the charge carrier lifetimes and consequently the performance of the devices. This brings new physical insights onto the role of different impurities in perovskite solar cells, which make these materials so remarkable.

Graphical abstract: Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells

Supplementary files

Article information

Article type
Communication
Submitted
09 Oct 2017
Accepted
05 Dec 2017
First published
05 Dec 2017

Energy Environ. Sci., 2018,11, 78-86

Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells

S. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt and J. Correa-Baena, Energy Environ. Sci., 2018, 11, 78 DOI: 10.1039/C7EE02901B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements