Issue 6, 2018

High-performance piezoelectric nanogenerators based on chemically-reinforced composites

Abstract

High-performance flexible piezoelectric nanogenerators (PNGs) based on composite thin films comprising amine-functionalized lead zirconate titanate (PZT) nanoparticles (PZT-NH2 NPs) and a thermoplastic triblock copolymer grafted with maleic anhydride are fabricated. The chemically reinforced composite contains a stable dispersion of PZT NPs within the polymer matrix with enhanced stress applied to the PZT NPs. Without additional dispersants, the uniform distribution of PZT-NH2 NPs in the polymer composite improves the piezoelectric power generation compared to that of a PNG device using pristine PZT NPs. This unique composite behavior allows the PZT-NH2 NP-based flexible PNG to exhibit a high output voltage of 65 V and current of 1.6 μA without time-dependent degradation. This alternating energy from the PNG can be used to charge a capacitor and operate light-emitting diodes through a full bridge rectifier. Furthermore, the proposed PNG is demonstrated as a promising energy harvester for potential applications in self-powered systems.

Graphical abstract: High-performance piezoelectric nanogenerators based on chemically-reinforced composites

Supplementary files

Article information

Article type
Communication
Submitted
03 Jan 2018
Accepted
06 Mar 2018
First published
13 Mar 2018

Energy Environ. Sci., 2018,11, 1425-1430

High-performance piezoelectric nanogenerators based on chemically-reinforced composites

E. J. Lee, T. Y. Kim, S. Kim, S. Jeong, Y. Choi and S. Y. Lee, Energy Environ. Sci., 2018, 11, 1425 DOI: 10.1039/C8EE00014J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements