Issue 6, 2018

A valence balanced rule for discovery of 18-electron half-Heuslers with defects

Abstract

Using first-principles DFT we systematically investigate the thermodynamic stability and off-stoichiometry in 108 nominal 19-electron half-Heusler (hH) compounds. We demonstrate unambiguously that considering a cation deficiency towards the off-stoichiometric valence balanced, VEC = 18 composition is necessary for explaining the stability of all previously reported nominal VEC = 19 compounds. This is understandable in terms of an energy benefit from valence balance considering the valence of each atom using Zintl chemistry that offsets the energy penalty of forming defects in nearly all cases. Thus, we propose a valence balanced rule to understand the ground state stability of half-Heuslers irrespective of stoichiometry and nominal electron count (8, 18 or 19). Using this generalized rule we (a) predict 16 previously unreported nominal 19-electron XYZ half-Heuslers and (b) rationalize the reports of giant off-stoichiometries in compounds such as Ti(1−x)NiSb which has been known for over 50 years. Of the 16 new compounds predicted here, Ti(1−x)PtSb was synthesized and the half-Heusler phase confirmed through X-ray studies. The flexibility in stoichiometry of the half-Heusler systems to attain a stable valence balanced composition by accommodating large defect concentrations opens up multiple dimensions for discovery of multi-component defective half-Heuslers based on intrinsic and extrinsic defects which compensate for the nominally non-18-electron count of the structure.

Graphical abstract: A valence balanced rule for discovery of 18-electron half-Heuslers with defects

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2018
Accepted
20 Mar 2018
First published
20 Mar 2018

Energy Environ. Sci., 2018,11, 1480-1488

Author version available

A valence balanced rule for discovery of 18-electron half-Heuslers with defects

S. Anand, K. Xia, V. I. Hegde, U. Aydemir, V. Kocevski, T. Zhu, C. Wolverton and G. J. Snyder, Energy Environ. Sci., 2018, 11, 1480 DOI: 10.1039/C8EE00306H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements