Issue 5, 2018

Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment

Abstract

Accurate and precise interpretation of concentrations from polyurethane passive samplers (PUF-PAS) is important as more studies show elevated concentrations of PCBs and other semivolatile air toxics in indoor air of schools and homes. If sufficiently reliable, these samplers may be used to identify local sources and human health risks. Here we report indoor air sampling rates (Rs) for polychlorinated biphenyl congeners (PCBs) predicted for a frequently used double-dome and a half-dome PUF-PAS design. Both our experimentally calibrated (1.10 ± 0.23 m3 d−1) and modeled (1.08 ± 0.04 m3 d−1) Rs for the double-dome samplers compare well with literature reports for similar rooms. We determined that variability of wind speeds throughout the room significantly (P < 0.001) effected uptake rates. We examined this effect using computational fluid dynamics modeling and 3-D sonic anemometer measurements and found the airflow dynamics to have a significant but small impact on the precision of calculated airborne concentrations. The PUF-PAS concentration measurements were within 27% and 10% of the active sampling concentration measurements for the double-dome and half-dome designs, respectively. While the half-dome samplers produced more consistent concentration measurements, we find both designs to perform well indoors.

Graphical abstract: Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2018
Accepted
23 Mar 2018
First published
27 Mar 2018

Environ. Sci.: Processes Impacts, 2018,20, 757-766

Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment

N. J. Herkert and K. C. Hornbuckle, Environ. Sci.: Processes Impacts, 2018, 20, 757 DOI: 10.1039/C8EM00082D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements