Issue 10, 2018

Biofouling reduction in a MBR by the application of a lytic phage on a modified nanocomposite membrane

Abstract

Biological contamination of membranes is an unavoidable problem in membrane bioreactor (MBR) systems. In addition, biofouling caused by antibiotic resistant bacteria (ARB) has become a critical issue not only for environmental health but also for the operation of membrane processes. This paper highlights the potential applications of lytic phage therapy on a modified nanocomposite membrane (polyvinylidene fluoride (PVDF)–sulfonated graphene oxide (SGO)) to control bacterial fouling on membranes and ARB in MBRs. An antibiotic resistant bacterium (E2) and a respective phage (P2) were isolated from municipal wastewater and used in a MBR system as a membrane foulant and antifoulant, respectively. The isolated bacteria were screened further for antibiotic susceptibility and the minimum inhibitory concentrations (MICs) were determined. E2 was found to be resistant to various concentrations of ampicillin, cefotaxime, vancomycin, tetracycline, and gentamicin. The phage treatment efficiency was examined by membrane flux. In the nanocomposite membrane, the E2 + P2 suspension showed a much higher flux (125 L m−2 h−1) than the E2 suspension (60 L m−2 h−1). Up to 57% higher flux was observed in the phage treatment, suggesting that the lytic phage prevented bacterial multiplication and biofilm formation. The multiplicity of infection (MOI) was examined to determine the optimal number of phages required to kill the bacteria. Scanning electron microscopy (SEM) was used to observe the bacterial infection and biofouling reduction due to the phage treatment. The modified nanocomposite membrane was aimed at protein fouling reduction (pore blocking resistance) and lytic phage addition was aimed at bacterial fouling reduction (cake layer resistance). The different types of fouling resistance of the membrane were estimated to distinguish between phage treatment and modified membrane efficiency. Based on the results of fouling resistance and SEM, the phage could reduce the membrane cake layer resistance and the modification of the membrane reduced the pore blocking resistance. The synergistic combination of phage treatment and the modified membrane reduced both types of biofouling. A separate cleaning system was installed and examined to avoid disturbing the normal MBR process (killing of bacteria in the feed solution by the phages).

Graphical abstract: Biofouling reduction in a MBR by the application of a lytic phage on a modified nanocomposite membrane

Article information

Article type
Paper
Submitted
16 May 2018
Accepted
01 Aug 2018
First published
02 Aug 2018

Environ. Sci.: Water Res. Technol., 2018,4, 1624-1638

Biofouling reduction in a MBR by the application of a lytic phage on a modified nanocomposite membrane

S. Ayyaru, J. Choi and Y. Ahn, Environ. Sci.: Water Res. Technol., 2018, 4, 1624 DOI: 10.1039/C8EW00316E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements