Issue 12, 2018

Lycopene attenuates AFB1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice

Abstract

Oxidative stress is an important molecular mechanism for kidney injury in aflatoxin B1 (AFB1) nephrotoxicity. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor for regulating the cellular oxidative stress response, which has been confirmed in animal models. Lycopene (LYC), a natural carotenoid, has received extensive attention due to its antioxidant effect with the activation of Nrf2. However, the role of LYC in protecting against AFB1-induced renal injury is unknown. To evaluate the chemoprotective effect of LYC on AFB1-induced renal injury, forty-eight male mice were randomly divided into 4 groups and treated with LYC (5 mg per kg of bodyweight) and/or AFB1 (0.75 mg per kg of bodyweight) by intragastric administration for 30 days. AFB1 and LYC were respectively dissolved in olive oil. We found that AFB1 exposure significantly increased the serum concentrations of blood urea nitrogen (BUN) and serum creatinine (SCR), and caused damage to the renal structure. Notably, LYC potentially alleviated AFB1-induced kidney lesions through attenuating AFB1-induced oxidative stress. Renal nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream target gene (CAT, NQO1, SOD1, GSS, GCLM and GCLC) translation and protein expression were ameliorated by pretreatment with LYC in AFB1-exposed mice. These results suggested that LYC potentially alleviates AFB1-induced renal injury. This effect may be attributed to the enhancement of renal antioxidant capacity with the activation of the Nrf2 antioxidant signaling pathway.

Graphical abstract: Lycopene attenuates AFB1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice

Article information

Article type
Paper
Submitted
01 Jul 2018
Accepted
31 Oct 2018
First published
01 Nov 2018

Food Funct., 2018,9, 6427-6434

Lycopene attenuates AFB1-induced renal injury with the activation of the Nrf2 antioxidant signaling pathway in mice

K. Yu, J. Zhang, Z. Cao, Q. Ji, Y. Han, M. Song, B. Shao and Y. Li, Food Funct., 2018, 9, 6427 DOI: 10.1039/C8FO01301B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements