Issue 2, 2018

Designing the crystalline structure of calcium phosphate seed minerals in organic templates for sustainable phosphorus management

Abstract

Global phosphorus (P) should be managed more sustainably to secure food, energy, and water for a growing population. Despite the abundance of calcium in most environments, we have not fully utilized its thermodynamic stability to form calcium phosphate minerals (CaP) for aqueous P management. In this study, we showed that the energy barriers to CaP nucleation can be reduced by seeding reactive CaP nuclei in calcium alginate beads. The CaP nucleation kinetics enhanced by seeds effectively immobilized aqueous P into the macroscale beads, which can be reused as a slow-release fertilizer. Given that more developed CaP crystalline seeds have a lower solubility than does an amorphous structure, equilibrium P concentration was regulated successfully by the seed crystallinity during both the removal and release processes. A simultaneous seed nucleation during alginate gelation enabled control of the degree of the seeds’ crystallization without using any hazardous substance or additional energy input. Poorly crystalline hydroxyapatite CaP seeds effectively decreased aqueous P concentration from 200 to 22.7 μM within one day at a final pH 7.2 (96.4 mg P g−1 dry seed). After P recovery, the beads were moved to a P-deficient environment to be evaluated as a slow-release fertilizer. Utilizing the thermodynamic stability of CaP at neutral pH, this approach highlights a potential application of naturally abundant biomaterials for sustainable P management.

Graphical abstract: Designing the crystalline structure of calcium phosphate seed minerals in organic templates for sustainable phosphorus management

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2017
Accepted
15 Dec 2017
First published
15 Dec 2017

Green Chem., 2018,20, 534-543

Designing the crystalline structure of calcium phosphate seed minerals in organic templates for sustainable phosphorus management

D. Kim, T. Wu, M. Cohen, I. Jeon and Y. Jun, Green Chem., 2018, 20, 534 DOI: 10.1039/C7GC02634J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements