Issue 3, 2018

Production of keto-pentoses via isomerization of aldo-pentoses catalyzed by phosphates and recovery of products by anionic extraction

Abstract

Xylulose and ribulose are rare keto-pentoses which are in high demand for the synthesis of commodities and fine chemicals. The production of keto-pentoses via isomerization of aldo-pentoses presents a carbon-efficient synthetic method. However, the isomerizations are equilibrium processes with thermodynamically limited yields of the products. In this work we examined isomerization of aldo-pentoses into keto-pentoses in the presence of NaH2PO4 + Na2HPO4 as a soluble catalyst at pH 7.5. A reaction network was proposed based on product distribution with D-(1-13C)-ribose as a substrate. Additionally, kinetics of the isomerization reactions was addressed. Selectivity for the keto-pentoses dramatically depends on the structure of the substrate. Arabinose and xylose give rise to a number of isomeric pentoses with low selectivities for the target products. Investigation of the reaction kinetics suggests that xylose and arabinose slowly isomerize into xylulose and ribulose, respectively. The latter react further significantly quicker to produce a number of isomers as subsequent products. This causes a complex mixture of products with low selectivity for the keto-pentoses. In contrast, ribose and lyxose as substrates yield ribulose and xylulose with rather high selectivities of 68–79% at 20% conversion. Ribose and lyxose quickly isomerize into ribulose and xylulose, respectively, whereas the subsequent processes are relatively slow. This results in a high selectivity for the keto-pentoses based on ribose and lyxose. Moreover, the isolation of xylulose from the reaction mixture was also studied. Xylulose can be selectively recovered after the isomerization of lyxose using anionic extraction with o-hydroxymethyl phenylboronic acid (HMPBA). After extraction, the aqueous phase containing phosphates and remaining lyxose can be recycled. After four cycles, the yield of xylulose reached 37% though only 19% can be achieved under batch conditions. Xylulose can be further recovered from the organic phase by back extraction using an acidified solution. Ribulose can also be extracted as an anionic complex with HMPBA, though ribose is co-extracted in this case and a separation of ribulose from ribose cannot be achieved. Extraction of the keto-pentoses occurs due to formation of β-xylulose–HMPBA and α-ribulose–HMPBA anionic complexes, whose molecular structures were established by NMR and MS.

Graphical abstract: Production of keto-pentoses via isomerization of aldo-pentoses catalyzed by phosphates and recovery of products by anionic extraction

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2017
Accepted
19 Dec 2017
First published
19 Dec 2017

Green Chem., 2018,20, 724-734

Production of keto-pentoses via isomerization of aldo-pentoses catalyzed by phosphates and recovery of products by anionic extraction

I. Delidovich, M. S. Gyngazova, N. Sánchez-Bastardo, J. P. Wohland, C. Hoppe and P. Drabo, Green Chem., 2018, 20, 724 DOI: 10.1039/C7GC03077K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements