Issue 17, 2018

Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads

Abstract

Cellulose aerogel beads were made with JetCutting technology and dried by supercritical CO2 extraction. Ionic liquid, 1,5-diazabicyclo[4.3.0]non-5-enium propionate ([DBNH][CO2Et]), was shown to be a suitable solvent due to its rheological and thermodynamic properties. The flow and viscoelastic properties of cellulose-[DBNH][CO2Et] solutions were studied in detail as a function of polymer concentration and solution temperature and compared to those of cellulose-1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). [DBNH][CO2Et] is a thermodynamically better solvent as the cellulose intrinsic viscosity is more than two times higher than that in [Emim][OAc]. This allows to simultaneously fit (i) the processing window of JetCutter that requires rather low solution viscosity at high shear rates and (ii) cellulose concentration that is high enough above the overlap concentration to make intact aerogel beads. The beads were prepared from 2 and 3 wt% cellulose-[DBNH][CO2Et] solutions and coagulated in water, ethanol and isopropanol. Bead sizes were from 0.5 to 0.7 mm when made from 2% solutions and up to 1.8 mm when prepared from 3% solution. Cellulose aerogel beads prepared by JetCutting showed main characteristics similar to those of monolithic cellulose aerogels obtained from cellulose dissolved in other solvents: the specific surface area was 240–340 m2 g−1 at densities of 0.04–0.07 g cm−3.

Graphical abstract: Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2018
Accepted
24 Jul 2018
First published
24 Jul 2018

Green Chem., 2018,20, 3993-4002

Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads

L. Druel, P. Niemeyer, B. Milow and T. Budtova, Green Chem., 2018, 20, 3993 DOI: 10.1039/C8GC01189C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements