Issue 5, 2018

A simple microfluidic platform for the partial treatment of insuspendable tissue samples with orientation control

Abstract

Microfluidic devices have extensively been applied to study biological samples, including single cells. Exploiting laminar flows on a small scale, microfluidics allow for the selective and partial exposure of samples to various chemical treatments. Traditionally, suspendable samples are first flowed into formed microchannels and are allowed to adhere to the channel floor randomly with no control over sample placement or orientation, before being subjected to partial treatment. This severely limits the choice of samples and the extent of sample preparations. Here, we overcame this limit by reversing the sequence. We prepared the samples first on glass substrates. A patterned silicone slab was then placed on the substrate to form channels at an appropriate orientation with respect to the sample. We used liquid silicone rubber (LSR) as the base material. Its compliance (low elastic modulus) and its adhesion to glass offer the necessary seal to form the microchannels naturally. The applicability of the device was demonstrated by testing single axons of embryonic Drosophila motor neurons in vivo. A segment of the axons was subjected to drugs that inhibit myosin activities or block voltage-gated sodium ion channels. In response, the axons reduced the clustering of neuro-transmitter vesicles at the presynaptic terminal of neuromuscular junctions, or increased the calcium intake and underwent membrane hyperpolarization, respectively. Such fundamental studies cannot be carried out using conventional microfluidics.

Graphical abstract: A simple microfluidic platform for the partial treatment of insuspendable tissue samples with orientation control

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2017
Accepted
13 Jan 2018
First published
17 Jan 2018

Lab Chip, 2018,18, 735-742

A simple microfluidic platform for the partial treatment of insuspendable tissue samples with orientation control

A. Fan, A. Tofangchi, M. De Venecia and T. Saif, Lab Chip, 2018, 18, 735 DOI: 10.1039/C7LC00984D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements