Photochemical device for selective detection of phenol in aqueous solutions†
Abstract
We demonstrate that a lab-on-a-chip device (hereafter termed a photochemical phenol sensor) that integrates a photocatalytic long-period fiber grating (PLPFG), fiber Bragg grating (FBG), polymer membrane, ultraviolet (UV) visible light, and microchannels can be exploited to selectively detect phenol in aqueous solutions. The novel PLPFG consisted of a thinned long-period fiber grating (LPFG) and a UV-visible-light-driven Er3+:YAlO3/SiO2/TiO2 (EYST) coating. The polymer membrane with high phenol permselectivity was synthesized using PEBA2533 doped with β-cyclodextrin and was wrapped around the EYST surface, thus forming a microchannel between the membrane and PLPFG to enable the injection and outflow of standard analytes. Subsequently, a Z-shaped microchannel in a PMMA plate was fabricated and employed as a storage chamber for phenol analytes. To realize the EYST photocatalyst, UV-visible-light was irradiated using a tapered UV optical array. Thereafter, to eliminate the effect of temperature on the device, a FBG sensor as a temperature-compensating element was presented. To demonstrate the sensitivity and selectivity of the proposed device, we investigated the effects of the EYST coating's thickness, phenol-based analytes and temperature on the sensitivity and accuracy of the device for measuring phenol concentrations. The results of our present study suggest that the photochemical sensor is effective over a wide range of concentrations (7.5 μg L−1 to 100 mg L−1), pH values (2.0 to 14.0), and temperatures (10 to 48 °C) for selective detection of phenol in aqueous solutions. Thus, the proposed lab-on-a-chip device may be useful for accurate determination of phenol concentrations in real samples.