Issue 11, 2018

Photochemical device for selective detection of phenol in aqueous solutions

Abstract

We demonstrate that a lab-on-a-chip device (hereafter termed a photochemical phenol sensor) that integrates a photocatalytic long-period fiber grating (PLPFG), fiber Bragg grating (FBG), polymer membrane, ultraviolet (UV) visible light, and microchannels can be exploited to selectively detect phenol in aqueous solutions. The novel PLPFG consisted of a thinned long-period fiber grating (LPFG) and a UV-visible-light-driven Er3+:YAlO3/SiO2/TiO2 (EYST) coating. The polymer membrane with high phenol permselectivity was synthesized using PEBA2533 doped with β-cyclodextrin and was wrapped around the EYST surface, thus forming a microchannel between the membrane and PLPFG to enable the injection and outflow of standard analytes. Subsequently, a Z-shaped microchannel in a PMMA plate was fabricated and employed as a storage chamber for phenol analytes. To realize the EYST photocatalyst, UV-visible-light was irradiated using a tapered UV optical array. Thereafter, to eliminate the effect of temperature on the device, a FBG sensor as a temperature-compensating element was presented. To demonstrate the sensitivity and selectivity of the proposed device, we investigated the effects of the EYST coating's thickness, phenol-based analytes and temperature on the sensitivity and accuracy of the device for measuring phenol concentrations. The results of our present study suggest that the photochemical sensor is effective over a wide range of concentrations (7.5 μg L−1 to 100 mg L−1), pH values (2.0 to 14.0), and temperatures (10 to 48 °C) for selective detection of phenol in aqueous solutions. Thus, the proposed lab-on-a-chip device may be useful for accurate determination of phenol concentrations in real samples.

Graphical abstract: Photochemical device for selective detection of phenol in aqueous solutions

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2018
Accepted
04 May 2018
First published
10 May 2018

Lab Chip, 2018,18, 1621-1632

Photochemical device for selective detection of phenol in aqueous solutions

N. Zhong, M. Chen, Z. Wang, X. Xin and B. Li, Lab Chip, 2018, 18, 1621 DOI: 10.1039/C8LC00317C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements