Issue 6, 2018

Direct ink writing of organic and carbon aerogels

Abstract

The use of additive manufacturing to 3D print aerogels has the potential to impact several important technologies such as energy storage, catalysis, and desalination. While there has been a great deal of focus on graphene aerogels, reports of 3D printed conventional carbon aerogels (CAs) are sparse. Activated CAs are particularly compelling because in addition to having a lower cost than a comparable graphene aerogel, they can achieve much higher surface areas (>3000 m2 g−1). Herein we report a 3D printable ink based on traditional resorcinol–formaldehyde sol–gel chemistry that can produce a final activated carbon aerogel with surface areas approaching 2000 m2 g−1 and good electrical conductivities (∼200 S m−1). Direct ink writing (DIW) is used to then fabricate electrodes, which demonstrate excellent electrochemical properties with a high specific capacitance of 215 F g−1 at 1 A g−1 and 83% capacitive retention at higher current densities (10 A g−1). The DIW electrode significantly outperformed its bulk counterpart and provides an example of how one can use 3D printed aerogel electrodes to overcome mass transport limitations and boost energy storage performance.

Graphical abstract: Direct ink writing of organic and carbon aerogels

Supplementary files

Article information

Article type
Communication
Submitted
22 May 2018
Accepted
23 Aug 2018
First published
17 Sep 2018

Mater. Horiz., 2018,5, 1166-1175

Author version available

Direct ink writing of organic and carbon aerogels

S. Chandrasekaran, B. Yao, T. Liu, W. Xiao, Y. Song, F. Qian, C. Zhu, E. B. Duoss, C. M. Spadaccini, Y. Li and M. A. Worsley, Mater. Horiz., 2018, 5, 1166 DOI: 10.1039/C8MH00603B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements