Issue 6, 2018

Thermal conductivity of suspended few-layer MoS2

Abstract

Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.

Graphical abstract: Thermal conductivity of suspended few-layer MoS2

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2017
Accepted
15 Dec 2017
First published
20 Dec 2017

Nanoscale, 2018,10, 2727-2734

Thermal conductivity of suspended few-layer MoS2

A. Aiyiti, S. Hu, C. Wang, Q. Xi, Z. Cheng, M. Xia, Y. Ma, J. Wu, J. Guo, Q. Wang, J. Zhou, J. Chen, X. Xu and B. Li, Nanoscale, 2018, 10, 2727 DOI: 10.1039/C7NR07522G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements