Issue 3, 2018

Laminated bilayer MoS2 with weak interlayer coupling

Abstract

Laminated bilayer MoS2 structures are prepared with MoS2 nanoparticles trapped between two individual MoS2 layers which can prevent the formation of a true stacking structure held together by van der Waals interaction. The laminated bilayer MoS2 clearly indicates a weak interlayer coupling with reduced van der Waals interaction between adjacent layers. As the interlayer coupling is insufficient to modify the band structure of MoS2, the laminated bilayer MoS2 can retain the direct bandgap structure of an isolated monolayer. Furthermore, by controlling the size of the MoS2 nanoparticles trapped in between, the interlayer distance and interlayer coupling of bilayer MoS2 structures can be engineered in a wide range, resulting in different bandgap behaviors. This finding is extremely important as it provides an effective approach to fabricate bandgap engineered bilayer MoS2 structures, which is a crucial step forward to making multi-layer MoS2-based p–n junctions and homo/hetero-structures, and thus advanced electronic devices, especially optoelectronic devices. This approach is applied to not only bilayer MoS2 structures, but also other layer structured two-dimensional materials.

Graphical abstract: Laminated bilayer MoS2 with weak interlayer coupling

Supplementary files

Article information

Article type
Paper
Submitted
11 Oct 2017
Accepted
05 Dec 2017
First published
05 Dec 2017

Nanoscale, 2018,10, 1145-1152

Laminated bilayer MoS2 with weak interlayer coupling

W. Zhou, C. Yuan, A. Hong, X. Luo and W. Lei, Nanoscale, 2018, 10, 1145 DOI: 10.1039/C7NR07569C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements