Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure
Abstract
Three-dimensional magnetic nanostructures are now attracting intense interest due to their potential as ultrahigh density future magnetic storage devices. Here, we report on the study of ultrafast magnetization dynamics of a complex three-dimensional magnetic nanostructure. Arrays of magnetic tetrapod structures were fabricated using a combination of two-photon lithography (TPL) and electrodeposition. All-optical time-resolved magneto-optical Kerr microscopy was exploited to probe the spin-wave modes from the junction of a single tetrapod structure. Micromagnetic simulations reveal that the nature of these modes originates from the intricate three-dimensional tetrapod structure. Our findings enhance the basic knowledge about the dynamic control of spin waves in complex three-dimensional magnetic elements which are imperative for the construction of modern spintronic devices.