Issue 9, 2018

Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

Abstract

Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy, and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm)4 (2-MeIm = 2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.

Graphical abstract: Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2017
Accepted
03 Feb 2018
First published
05 Feb 2018

Nanoscale, 2018,10, 4291-4300

Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

M. W. Terban, D. Banerjee, S. Ghose, B. Medasani, A. Shukla, B. A. Legg, Y. Zhou, Z. Zhu, M. L. Sushko, J. J. De Yoreo, J. Liu, P. K. Thallapally and S. J. L. Billinge, Nanoscale, 2018, 10, 4291 DOI: 10.1039/C7NR07949D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements